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ABSTRACT: Industries often adopt a two-stage design
for blow-molded parts. The part thickness distribution is
first determined by structural analysis to satisfy loading
requirements, and this is followed by programming of the
die-gap opening to realize the thickness distribution. This
study proposes a soft-computing-based optimization
scheme integrating part design and molding process con-
trol to search for the die-gap programming of the molding
process with minimum part weight while satisfying per-
formance constraints. Finite element analysis tools are
applied to simulate the extrusion-blow-molding process
and structural analysis. To reduce the number of simula-
tions, the proposed scheme first establishes a neural net-
work (NN) model from a small experimental design to
simulate the system response, and it searches for the
model optimum with a genetic algorithm (GA). Because
the prediction generality of an NN from small training

samples will be limited, this work proposes fuzzy reason-
ing for the prediction reliability of the model to guide the
GA search for a quasi-optimum. The verification of the op-
timum is added to retrain the model, and the process iter-
ates until convergence is reached. The iteration
automatically distributes additional samples in the most
probable space of the design optimum for the evolving
model and improves the sampling efficiency. A high-den-
sity polyethylene bottle design is presented to illustrate
the application and for comparison with the Taguchi
method and a simple iteration of NN and GA. The pro-
posed scheme outperforms the other two and provides a
feasible optimum from a robust convergence. VC 2010 Wiley
Periodicals, Inc. J Appl Polym Sci 117: 222–234, 2010
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INTRODUCTION

Typical extrusion-blow-molded parts involve two
design phases. The part thickness distribution is first
determined by structural analysis to satisfy the load-
ing requirements, and this is followed by the control
of the extrusion-molding process to realize the thick-
ness distribution. Recent advances in numerical tools
have proven their advantages in the applications of
structural analysis and process simulation. Design
verification using the simulation tools requires lower
costs and less time than conventional trial-and-error
experiments. Performance optimization for blow-
molding parts then becomes feasible: a design with
minimum part weight can be sought while the me-

chanical constraints are satisfied. However, because
of the complexity of numerical simulation, a stream-
lined design procedure with high searching effi-
ciency is still important.
Extrusion blow molding involves four processes:

parison extrusion, mold clamping, parison inflation,
and part solidification. First, parison extrusion pro-
duces a molten thermoplastic tube coming from the
die. The parison shape is determined by the die ge-
ometry, die-gap programming, and flow rate. The
parison is then clamped, and high-pressure air is
blown into it to obtain the final part. Finite element
tools such as BlowSim (developed by the National
Research Council of Canada) provide an integrated
simulation for parison-extrusion and blow-molding
processes to obtain the final thickness distribution of
the inflated part.1,2

By manipulation of the die-gap opening over time,
the parison profile can be controlled. Clearly, there
is a direct relationship between the parison thickness
and the inflated part thickness. The parison thick-
ness profile is critical because it determine part per-
formance (e.g., the load resistance and part weight).
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The main goal of parison programming is to control
the die-gap openings to obtain the desired thickness
distribution in the final parts.3 The programming
points are then used to specify the die-gap openings
of the parison in the extruder as a function of time.
For the bottle example in Figure 1, the die-gap open-
ings at seven discrete extrusion times—P(t0), P(t1),
P(t2), P(t3), P(t4), P(t5), and P(t6)—are identified as
the design variables.

Higher material efficiency will lead to a lighter
part. A uniform wall thickness design for the final
inflated part may lead to overdesign for unloaded
sections and underdesign for critical loading areas if
the parts are subjected to mechanical loads such as
impact and internal pressurization. A uniform thick-
ness distribution will not guarantee optimum per-
formance. An optimum part thickness profile has to
satisfy the requirement of mechanical strength with
minimum part weight. Consequently, the problem
can be converted to the determination of the die-
gap-opening profile of the extruder such that the
weight of the final blown part is minimized; this is
subject to the constraint that the Von Mises stresses
of the part under test loads should not exceed the
material yield stress.4

Often, the optimization process is conducted in
two stages.5 Performance optimization uses a gradi-
ent-based technique to determine the minimum part
thickness distribution that satisfies the stress con-
straint, and this is followed by the process optimiza-
tion phase, which is used to determine the optimal
die-gap-opening profile that minimizes the part
weight, which is subject to the minimum thickness
constraint derived from the performance optimiza-
tion.6,7 The minimum thickness constraint of each
controlling point is determined by the retention of
the maximum thickness from the individual test
load. However, the stress of each element is not only

a function of the local thickness. A part satisfying
the minimum thickness constraint may not guaran-
tee the satisfaction of the stress constraint.
Many studies have addressed the optimization of

parison programming to achieve the required thick-
ness distribution of blown parts. The searching effi-
ciency becomes an important issue for time-consum-
ing simulations and expensive experiments such as
blow molding. The Taguchi method8 is well known
for its efficiency and simplicity in parameter design.
Inspired by statistical factorial experiments, the
Taguchi method features orthogonal arrays and
analysis of the mean (ANOM) to analyze the effects
of design variables. Each variable is assumed to
have finite levels (set points), such as two or three
levels, within the investigated range. The orthogonal
array is a type of fractional factorial experiment. The
application of orthogonal arrays reduces the number
of experiments, and this is particularly effective for
design optimization involving expensive experi-
ments. An ANOM study of experimental results
reveals the effects of design parameters, and these
are used to determine the optimal level of each pa-
rameter.9 However, the prediction of the optimal
design is sensitive to the selection of factorial levels
and interaction effects. Also, the restriction of pa-
rameter values to factorial levels reduces the possi-
bility of having better designs between preset levels.
Genetic algorithms (GAs) apply the evolutionary

principles found in nature to the problem of finding
an optimal solution,10–12 and they are popular for
solving complex engineering problems. GAs use a
selection operator to avoid trapping at a local opti-
mum, which often happens in classical optimiza-
tions, when a better optimum can be found outside
the vicinity of the current solution. A lot of modifi-
cations of the methodology have been proposed
since the concept was first raised in 1975. Among
them, competent GAs13 claim to find a global or
nearly global solution in a reasonable time. Banier
and Brisset14 introduced a GA mixed with constraint
satisfaction problem (CSP) techniques. The approach
is designed for combinatorial problems whose search
spaces are too large and/or objective functions that
are too complex for the usual CSP techniques and
whose constraints are too complex for conventional
GAs. The main idea is the handling of subdomains
of the CSP variables by a GA. By combining the
achievements of genetic and evolutionary computa-
tion with the advanced methods of machine learning
and probabilistic modeling, the Bayesian optimiza-
tion algorithm is capable of solving problems
decomposable into subproblems of bounded order
quickly, accurately, and reliably.15

The integration of trained network models and a
searching algorithm becomes attractive for engineer-
ing optimization. The numerical network model

Figure 1 Exemplar programming points of the parison
extrusion of bottles. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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replaces the exact engineering system during the op-
timum search to reduce experimental costs.16 There
are two types of integration in terms of the modeling
strategy. One aims to establish a simulating model
with accurate generality for the engineering system
in the first place. A searching algorithm is applied to
search for the optimum in the simulated model
instead of interacting with the actual engineering
system.17,18 However, a great number of training
samples are often required to establish an accurate
simulating model, and this is not cost-realistic in en-
gineering applications. Also, the training accuracy
varies with the complexity of the problems, and no
universal strategy guarantees prediction generality.
Some others start from a network model from
smaller training samples. Although modeling imper-
fection is to be expected, additional training samples
apply only to the space of interest to reduce the
sampling cost. Here, the searched optimum from the
imperfect model serves as an additional training
sample.19,20 Therefore, the training and searching
processes iterate to improve the network modeling
gradually, especially in the probable space of the
design optimum.

Sampling efficiency is important for the network
modeling of applications with a high sampling cost.
The selection of well-designed experiments such as
Taguchi’s orthogonal arrays as training samples
could balance sampling cost and prediction accu-
racy. Some studies have applied Taguchi’s orthogo-
nal arrays as training samples for a neural network
(NN) model and searched for the optimum with
GAs.21–23 Although the use of orthogonal arrays as
training samples reduces the sampling cost, limited
learning samples may greatly diminish the predic-
tion generality of the trained network model for
complex systems such as extrusion blow molding. A
lower sampling cost is traded for lower prediction
generality. Previous studies have often overlooked
the possibility of the lack of prediction generality for
a network model because of deficient training sam-
ples, and an unbounded search for the optimum in
the feasible domain of a network model might lead
to erroneous results. Even if the confirmation result
of the search optimum is used to retrain the network
model, the iteration often take a long time to con-
verge. The reliable prediction of such a network
model from deficient samples is likely restricted to
the neighboring space of training samples. A guided
search in an evolving network model would increase
searching reliability and sampling efficiency.

This study proposes a novel optimization scheme
integrating part design and molding process control.
The soft-computing-based optimization scheme
searches for the die programming of the molding
process with minimum part weight while satisfying
the performance constraints. The design objective is

to search for a feasible stress distribution with a
minimum deviation of the allowable material stress
via the manipulation of the die-gap opening at des-
ignated programming points. To balance the simula-
tion cost and the prediction accuracy, the study
applies an evolving modeling and optimization
strategy to increase the sampling efficiency. Two fi-
nite element programs, BlowSim and ANSYS, are
introduced to simulate the thickness distribution of
the extrusion-blow-molding processes and to per-
form the structural analysis under test loads. A bot-
tle design is presented to illustrate the proposed
method.

OPTIMIZATION STRATEGY

The proposed optimization strategy, prediction-reli-
ability-guided search of evolving network (PRE-
GSEN) modeling, first establishes an NN from a
small experimental design and searches for the opti-
mum of the trained model with a GA. To cope with
a possible deficiency of prediction generality due to
small learning samples, the strategy introduces
fuzzy prediction reliability to direct the evolution
decision in the GA and increase the evolving prior-
ity surrounding training samples. The verification
experiment of the derived optimum from the GA
search is then introduced to the learning samples to
retrain and evolve the network model. Therefore,
only one additional interaction with the actual engi-
neering system is required in each iteration. The
training and searching processes iterate until the op-
timum convergence. A flowchart of the proposed
optimization strategy is illustrated in Figure 2.

Evolving NN model

NN technologies are effective in establishing a simu-
lation model from sampling data for engineering
systems. A back propagation network (BPN) is a
type of supervised learning network and the most
widely used network model.24 Previous research-
ers2,16 have proposed a prediction model for extru-
sion-blow-molding applications using a BPN from
extensive experimental data. However, this study
applies a BPN to establish a rough network model
from a small number of training samples only for
the purpose of optimum search. Often, the predic-
tion accuracy of the network model will be closely
related to the number of training samples. For an en-
gineering application with expensive experimental
costs, the number of training samples will be lim-
ited, and this will greatly affect the generality of the
prediction model. In light of the limited prediction
ability, the search of the neighboring regions sur-
rounding the training samples is more reliable but
will provide only a quasi-optimum. The verification
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of the optimum will be applied to retrain the net-
work. Therefore, the prediction accuracy of the
model will improve in an evolving fashion, espe-
cially for the most probable region of the design op-
timum, to increase the sampling efficiency.

The proposed BPN model consists of a typical
three-layer structure, namely, an input layer, a hid-
den layer, and an output layer. In this study, Tagu-
chi’s orthogonal arrays are suggested for the design
of training samples to reduce the number of experi-
ments, and this is particularly effective for design
optimization involving expensive experiments or
time-consuming simulations. The control variables are
factorized in the preliminary investigated range. A
minimal three-level orthogonal array is used for the
learning samples, and a minimal two-level orthogonal
array distributed in the middle of the variable range
is used for the testing samples. Learning samples are
used to determine the weighting matrices among neu-
rons, and testing samples are used to determine the
accuracy and generality of the network.

Extrapolation distance (ED)

For an NN trained from a limited number of train-
ing sampling, the reliability of the model might be
restricted to the neighboring space of the learning
samples, particularly for a complex system. Experi-
ence tells us that the prediction accuracy of the
model is getting worse if the predicted design is far

away from the training samples. The mean Euclid
distance (rij) between the predictive designs (Di) and
the sample data (Sj) is defined as follows:

rij ¼ 1

n

Xn
k¼1

ðdik � sjkÞ2
" #0:5

(1)

where Di ¼ [di1, di2, . . . , din], Sj ¼ [sj1, sj2, . . . , sjn],
and n represents the number of variables.
As a rule of thumb, the prediction accuracy for

the interpolating designs of an NN model is better
than that for the extrapolating designs. Also, the
closer the predictive design is to the training sam-
ples, the higher the prediction accuracy is. This
study proposes the ED as a neighboring index of a
predictive design, which is defined as the minimum
mean Euclid distance between the prediction and
the training samples:

EDi ¼ minðrijÞ (2)

To facilitate the calculation of the distance
between designs, the values of the continuous vari-
able (xk) are normalized to zk with the following
transformation:

zk ¼
xk � Maximum xkð Þ þ Minimum xkð Þ½ �

2

n o
Maximum xkð Þ þ Minimum xkð Þ½ �

2

(3)

where Maximum(xk) and Minimum(xk) represent the
maximal and minimal values of design variable xk in
the training samples, respectively. For discrete varia-
bles, the factorial values are assigned with equal
spacing between �1 and þ1.
The interpolating designs often have higher pre-

diction accuracy than the extrapolating designs in
NN models. This study defines the smallest convex
hyperpolyhedron surrounding all training samples
as the sampling enclosure space (SES), which is used
to differentiate interpolation designs and extrapola-
tion designs in a multidimensional simulation
model. The SES boundary is constructed by a set of
n-dimensional hyperplanes, which are determined
by n noncoplanar points from the training samples.
If the prediction point is inside or on the boundary
of the SES, it is an interpolating design; otherwise,
the prediction point is an extrapolating design. A
two-dimensional example is shown in Figure 3,
where D1 is an interpolating design and D2 is an
extrapolating design.
The training samples are represented as normal-

ized coordinates Z1 and Z2 to calculate the EDs for
predicting designs. The ED is assumed to be positive
for an extrapolating design and negative for an
interpolating design. For instance, an NN is trained

Figure 2 Optimization flowchart of PREGSEN. [Color fig-
ure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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from five samples (S1–S5), as shown in Figure 3. The
ED of the interpolating design is designated as �r15
because r15 is the shortest mean Euclid distance
among r1i (i ¼ 1–5). Likewise, the ED of the extrapo-
lating design is þr21. An interpolating design with a
small ED is expected to have better prediction accu-
racy, and for an extrapolating design with a large
ED, the prediction accuracy is likely doubtful.

Fuzzy reasoning of the prediction reliability

Fuzzy systems are widely used in engineering appli-
cations to convert expert knowledge into a mathe-
matical reasoning model. Typical fuzzy systems con-
sist of a fuzzifier, a fuzzy rule base, a fuzzy
inference engine, and a defuzzifier.12 The fuzzifier
converts the input data into linguistic fuzzy varia-
bles. The expert’s reasoning is then expressed as a
set of fuzzy conditional statements based on the
fuzzy variables. The decision can be reasoned from
the fuzzy inference engine, and this is followed by
the defuzzifier for conversion of the linguistic con-
clusion into crisp output.

Here a fuzzy model is proposed to determine the
prediction reliability. The prediction reliability of the
network model will be related to the ED of a predic-
tive design. The association of prediction reliability
and EDs is based on two fuzzy concepts. One is to
assign less reliability to the prediction point with
more distance from the learning samples, and the
other is to assign less reliability to extrapolating
designs than interpolating designs. Seven single-
input, single-output inference rules are proposed that
are based on the nature of the simulated models:

• R1: If the ED of the design is positive big
(PB), prediction reliability is bad.

• R2: If the ED of the design is positive me-
dium (PM), prediction reliability is poor.

• R3: If the ED of the design is positive small
(PS), prediction reliability is fair.

• R4: If the ED of the design is zero (ZE), pre-
diction reliability is excellent.

• R5: If the ED of the design is negative small
(NS), prediction reliability is good.

• R6: If the ED of the design is negative me-
dium (NM), prediction reliability is fair.

• R7: If the ED of the design is negative big
(NB), prediction reliability is poor.

Seven linguistic levels are defined to describe the
condition variable ED: PB, PM, PS, ZE, NS, NM, and
NB. Five levels are defined to describe the assessment
results for the prediction reliability: excellent, good,
fair, poor, and bad. Because small orthogonal arrays
are used for the training samples, the maximum ED
(a) can be approximated with random sampling in
the preliminary variable range and used in the defini-
tion of the membership function for the linguistic lev-
els of ED. Standard membership functions associated
with these statements are illustrated in Figures 4 and
5. A simple center average defuzzifier is applied to
derive the prediction reliability. Figure 6 presents a
prediction reliability contour plot for a two-dimen-
sional case using the fuzzy inference. The five solid
dots in Figure 6 represent the training samples in the
simulated network. The fuzzy model can generally
represent the intrinsic characteristics of the prediction
reliability of a network model.

Figure 3 EDs of predicted designs for a two-dimensional
example. Z1 and Z2 represent the horizontal coordinate
and the vertical coordinate for two-dimensional problem.
Z1 is normalized of the input variable (X1l) between �1
and þ1, (l ¼ 1 � n). Z2 is normalized of the input variable
(X2l) between �1 and þ1, (l ¼ 1 � n). [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 4 Membership functions of the condition levels of
ED.

Figure 5 Membership functions of the assessment levels
of prediction reliability.
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Search for the model optimum using GA

Taking advantage of the fast recall of an NN, a GA
is applied to search for the optimum of the trained
network model established from engineering prob-
lems to reduce experimental costs. GAs are catego-
rized as global search heuristics, and they are capable
of searching for a global optimum for a simulated
model. Optimizing GA search is not the focus of this
study. Any improvement over the searching effi-
ciency of GAs in previous studies can be applied to
search for the model optimum. Whether the model
optimum is the exact optimum of the engineering
system depends on the accuracy of the simulated
model. If a perfect network model for the system is
available, the searched optimum will be the exact op-
timum. However, a great number of training samples
will be required, and this is not cost-realistic in engi-
neering applications. The prediction generality of a
simulated network is limited if the number of train-
ing samples is deficient. A unbounded search of the
trained network might lead to erroneous results.

Here, the fuzzy inference of the prediction reliabil-
ity is introduced into the definition of the fitness
function to prioritize the searching domains to the
neighboring space of the training samples, and this
thus ensures the searching reliability. The training
samples are assumed to be the initial population in
this study. For each generation in the evolution, the
designs in the population are sorted and ranked
from the best to the worst on the basis of the pre-
dicted responses from the simulated network and

the prediction reliability from the fuzzy inference.
The fitness function is defined as the sum of the
response rank and the reliability rank, as shown in
Eq. (4). During the evolution processes of mutation,
crossover, and reproduction, the design with the
higher rank will have an advantage in the evolution-
ary selection using roulette wheel selection.10 This
definition of the fitness function will ensure the pre-
vailing of a reliable optimum at the end of evolution:

Fitness ¼ Response rankþ Reliability rank (4)

By a series iteration of selection and reproduction,
the GA search will provide a quasi-optimum of the
network model. The current model is possibly lack-
ing generality because of scarce training samples.
Because of the inclusion of prediction reliability in
the fitness function, the GA tends toward a conserv-
ative search surrounding training samples with a
balance between reliability and optimality. The theo-
retical optimum of the trained model is not desirable
if the optimum is far away from the training sam-
ples because of a possibly enormous prediction
error. The quasi-optimum, on the other hand, is
more reliable even for a deficient simulated model.

Iterative training and search for the
design optimum

The verification result of the quasi-optimum will be
introduced to the learning samples to retrain the
model. Only one verification experiment is required
for the optimum obtained from the guided GA
search of the evolving network model. Although the
guided search using the prediction reliability might
restrict the search domain to the neighboring space
of training samples, the search space will be modi-
fied with the addition of new samples from the veri-
fication of the optimum. If the additional learning
sample is an extrapolating design, the SES in the
reliability inference will expand, and the searching
range in the GA will adjust dynamically because of
the normalization process and the fuzzy inference.
The proposed algorithm will secure the reliability

of the searched optimum in iteration and will evolve
the exploration range automatically. Global accuracy
of the simulated model is not necessary for the
search for the optimum. Instead of increasing sam-
pling points evenly distributed in the investigated
range, additional sampling points will congregate in
the most probable region of the global optimum
with the proposed algorithm. The sampling effi-
ciency will thus increase, and this is particularly im-
portant in engineering applications. The training and
searching process iterates until the convergence of
the predicted optimum is reached. The quasi-opti-
mum will gradually approach the global optimum.

Figure 6 Prediction reliability contour plot for a two-
dimensional example with five training samples. [Color
figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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The convergence criteria include (1) the convergence
of the predicted optimum and the verified result
and (2) the variation of the last three searched
optima within the engineering tolerance. For engi-
neering practice, a tradeoff between design improve-
ments and experimental costs is a more important
concern.

OPTIMIZATION OF BLOW-MOLDING
PROCESSING CONDITIONS FOR

PERFORMANCE DESIGN

This session presents the application of the proposed
optimization strategy to obtain the optimal parame-
ter design of an extrusion-blow-molding process for
a high-density polyethylene bottle. Two types of
loadings usually used in industrial applications are
investigated, and they include internal pressuriza-
tion at 90 psi and a top displacement of 3.75 mm for
5 s, as illustrated in Figure 7. The maximum allow-
able stress, corresponding to the ultimate tensile
strength of the material, is 33 MPa. For this material,
Young’s modulus is 879 MPa, and the thickness
shrinkage is 5%. The software simulating blow
molding, BlowSim, is applied to estimate the thick-
ness distribution of the blown bottle. The finite ele-
ment analysis software ANSYS is used for the struc-
tural analysis of the bottle.

Formulation for performance optimization

The design objective is to obtain a wall thickness
distribution of minimal weight by manipulation of
the die-gap programming; this is subject to the stress

distribution below the allowable level. The initial
formulation for this optimization can be represented
as follows:

Minimize: Part weight [P(tj)]
Design variable: P(tj), j ¼ 0–6
Constraints: si[P(tj),P,T] 5 ra

where P(tj) represents the die-gap openings of the
controlling points, as illustrated in Figure 1; si
represents the stresses of node i; ra is the allowable
stress of the material; P is the internal pressure load;
and T is the top displacement load.
The reduction of an element’s thickness results in

an increase in its stress level. To increase the mate-
rial efficiency, the stress distribution should be as
close as possible to the allowable stress. The smaller
the variance of the stress distribution is, the more
closely the mean can be moved toward the material
yield strength, and this leads to thinner elements
and thus reduces part weight. However, any ele-
ment’s stress exceeding the allowable strength might
result in part failure. In this work, the constrained
optimization problem is replaced by an uncon-
strained minimization of the variance of the stress
distribution around the allowable stress level and
the constraint penalty function, as illustrated in
Figure 8.
The modified objective function [Eq. (5)] contains

two portions, the quality loss due to the variation of
the stress distribution and the penalty loss due to
the constraint violation:

MOBJ ¼
Pn
i¼1

ðsi � raÞ2

n
þ
Xn
i¼1

< si � ra >
2 (5)

where n is the total number of nodes of the simula-
tion model and si is the stress of node i.
The quality loss due to the variation of the stress dis-

tribution is estimated by the mean squared deviation of

Figure 7 Two mechanical testing loads of the high-den-
sity polyethylene bottle: P and T. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 8 Illustration of the design objective for perform-
ance optimization. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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the Von Mises stress from the allowable stress. The av-
erage quality loss can be reformulated into two parts:
the deviation of the mean stress from the allowable
stress and the variation of the stress around the mean:

Pn
i¼1 ðsi �raÞ2

n
¼ ð�si �raÞ2 þ

Pn
i¼1 ðsi ��siÞ2

n

� ð�si �raÞ2 þ m ð6Þ

where si is the mean stress and v is the distribution
variance from the structural analysis. Reducing the
quality loss leads to a smaller stress distribution and
a mean stress closer to the allowable stress.

The second portion of the modified objective func-
tion, the penalty loss, is formulated with a second-
order singularity function as shown in Eq. (7). This
portion accounts for the penalty of the FEM nodes
violating the stress constraint:

< si � ra >
2 ¼ 0; if si � ra

ðsi � raÞ2; if si > ra

�
(7)

The search for the design of the minimum objective
function will increase the material efficiency and thus
provide a thickness distribution of minimum part
weight while satisfying the loading requirements.

Design optimization using the Taguchi method

The Taguchi method applies ANOMs to estimate pa-
rameter sensitivities, and it is popular in engineering
applications. The die-gap openings at seven discrete
extrusion times [P(t0), P(t1), P(t2), P(t3), P(t4), P(t5),

and P(t6)] are selected as the design variables to con-
trol the parison thickness in seven evenly distributed
sections. The initial design adopts a uniform die-gap
opening of 75%. Under the assumption of three lev-
els for each design variable, a minimal orthogonal
array (L18) is selected as the experimental design
(Table I). The factorial levels locate the initial design
in the middle of the design space of 55–95% for each
opening. The logarithm transformation of the modi-
fied objective function will be used as the signal-to-
noise ratio (S/N) for Taguchi’s parameter design:

S=N ¼ �10 � logðMOBJÞ (8)

Figure 9 presents an effect plot for the die opening
from the experimental design in Table I. A design
with a higher S/N ratio has a smaller value of
the objective function. Taguchi’s parameter design

TABLE I
Experimental Design with the L18 Orthogonal Array

L18

A B C D E F G

MOBJa S/NP(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6)

1 55 55 55 55 55 55 55 21,791.25 �43.38
2 55 75 75 75 75 75 75 4,625.35 �36.65
3 55 95 95 95 95 95 95 3,308.56 �35.20
4 75 55 55 75 75 95 95 65,0545.19 �58.13
5 75 75 75 95 95 55 55 214,988.62 �53.32
6 75 95 95 55 55 75 75 5,544.66 �37.44
7 95 55 75 55 95 75 95 64,469.80 �48.09
8 95 75 95 75 55 95 55 6,349.12 �38.03
9 95 95 55 95 75 55 75 119,726.34 �50.78

10 55 55 95 95 75 75 55 1,245,531.06 �60.95
11 55 75 55 55 95 95 75 25,238.52 �44.02
12 55 95 75 75 55 55 95 7,907.71 �38.98
13 75 55 75 95 55 95 75 645,177.17 �58.10
14 75 75 95 55 75 55 95 1,565.06 �31.95
15 75 95 55 75 95 75 55 31,459.45 �44.98
16 95 55 95 75 95 55 75 997,229.07 �59.99
17 95 75 55 95 55 75 95 222,059.20 �53.46
18 95 95 75 55 75 95 55 5,040.66 �37.02

Initial 75 75 75 75 75 75 75 8,229.76 �39.15

a MOBJ, modified objective function.

Figure 9 Effect plot for the die opening during the blow
molding of the bottle. A: P(t0); B: P(t1); C: P(t2); D: P(t3); E: P(t4);
F: P(t5); G: P(t6). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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scheme suggests the optimum treatment to be
A1B3C3D1E1F3G3. The verification result from BlowSim
and ANSYS for Taguchi’s optimum shows an S/N ra-
tio of�37.29 dB, which is very different from the value
of �25.63 dB predicted with Taguchi’s additive model.
The verified performance of the predicted optimum is
not even the best among the design experiments. The
parameter design using the Taguchi method fails for
possible reasons including the interactions among var-
iables and significant system nonlinearity.

Optimization of the bottle thickness distribution
using PREGSEN

Establishing the simulated NN model

Training samples are essential to the prediction qual-
ity of network models. The L18 orthogonal array
from the previous Taguchi application is used as a
learning sample to reduce the number of experi-
ments and to maintain good sample representation.
Another two-level orthogonal array (L8), illustrated
in Table II, is selected as the testing sample for the
network training. The level values (65 and 85%) are
set between the three-level values (55, 75, and 95%)
of the learning samples.

The steepest gradient method is assumed to train
the weighting matrices of the BPN. There is no defi-

nite rule available to determine appropriate parame-
ters in the network training. This study applies a
simple Taguchi parameter design to determine the
number of neurons in the hidden layer, the initial
learning rate, the decreased learning rate, and the
increased learning rate. Three-level factorial parame-
ters are assumed. The optimal parameter design is
derived with an L9 orthogonal array experiment and
an ANOM for the optimal training efficiency in the
first 10 epochs. The parameter design in this case
suggests 19 neurons in the hidden layer, an initial
learning rate of 0.5, a decreased learning rate of 0.85,
and an increased learning rate of 1.15.

Evolving modeling and optimization

As illustrated in Figure 2, the prediction reliability is
introduced into the fitness function of the optimiza-
tion search using a GA. The anchor parameter a in
the member function of Figure 4 is 1.4 for this exper-
imental design of L18 þ L8. The training samples
are used as the initial population in each epoch.
Each sample needs to be encoded by a gene with a
binary genetic algorithm. In this study, the bit length
of the encoded chromosome is assumed to be 12.
Because the design variables have been normalized
with Eq. (3), the searching boundary in GA is set to

TABLE II
Sample Testing with the L8 Orthogonal Array

L8

A B C D E F G

MOBJa S/NP(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6)

1 65 65 65 65 65 65 65 34,842.0 �45.42
2 65 65 65 85 85 85 85 438,815.8 �56.42
3 65 85 85 65 65 85 85 4,051.5 �36.08
4 65 85 85 85 85 65 65 10,328.1 �40.14
5 85 65 85 65 85 65 85 3,880.4 �35.89
6 85 65 85 85 65 85 65 153,796.5 �51.87
7 85 85 65 65 85 85 65 17,050.2 �42.32
8 85 85 65 85 65 65 85 45,926.9 �46.62

a MOBJ, modified objective function.

Figure 10 Iteration result for a simple recursion of
NNGA. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 11 Iteration result with PREGSEN. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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be 61.5 to explore a possible optimum outside the
preliminary design space. The simulated NN model
will then provide the response estimation for each
chromosome combination.

The probability of crossover should have a larger
value; typically, the probability of crossover ranges
from 0.5 to 1.0. A single-point crossover and muta-
tion have been used in this study. The mutation op-
erator must be used with a low probability; typi-
cally, the mutation probability ranges from 0.01 to
0.1. Again, the parameters of the GA have been
obtained with Taguchi’s parameter design. In the
GA search of the evolving network model, the initial
population size of 26, the crossover rate of 0.8, the
mutation rate of 0.1, the optimization tolerance of
0.01, the maximum generations of 300, and the elitist
strategy25 are used.

If the prediction reliability of the current network
model is not considered, the iteration is a simple
iteration of the neural network and genetic algo-
rithm (NNGA). The GA will assume global accuracy
in the investigated range and search for a design
with the best performance in the current simulated
model. The optimum derived from the GA search
might be different from the actual optimum of the en-
gineering system because of the imperfection of the
current simulated model. The searched optimum is
verified with BlowSim analysis, and the verification
design is added to the previous learning samples to
retrain the network model. The iteration process of
this conventional NNGA is shown in Figure 10. The
result shows a continuous discrepancy between the
predicted optimum and the verified results due to the
lack of sufficient generality for a simulated network
from limited training samples. The iteration process
had not yet shown convergence after 51 iterations.

Next, the proposed algorithm, PREGSEN, is
applied to the same problem. The fitness function is
modified with fuzzy prediction reliability. As illus-
trated in Figure 11, although the verified value and
the quasi-optimum of the initial network model

obtained with the prediction-reliability-guided GA
search are still different because of the lack of gener-
ality of the initial model, the difference is greatly
reduced because a more reliable quasi-optimum is
provided by the reliability-guided search. With the
addition of the quasi-optimum to the learning sam-
ples to retrain the evolving network model, the itera-
tion quickly converges.
The convergence criteria are defined as follows:

(1) the prediction error of the objective is less than
5, and (2) the coefficient of variation (COV) of the
last three searched optima is less than 0.001.
Although the iteration result seems to converge at
iterations 15 and 25, as shown in Figure 11, there is
a significant constraint violation as we examine their
corresponding objectives (Table III). The penalty loss
shows that the stresses of some finite element nodes
exceed the allowable stress of the bottle material,
and this might result in part failure. Also, they have
not met the convergence criteria. Both criteria are
reached at iteration 48. There is no constraint viola-
tion. The prediction error is 3.2, and the COV is
about 0.00005. The optimum die-gap opening is
listed in Table IV.

Comparison of the results

This session compares the optimization results from
the proposed method with those from the Taguchi
method and a simple iteration of NNGA in terms of
the design feasibility, part weight, and searching ef-
ficiency. Figure 12 presents the profiles of optimal
die-gap openings of parison programming, and Ta-
ble V shows the stress distributions under test loads
for the initial design and the optima obtained with
various methods. Taguchi’s ANOM approach is
liable to parameter interactions and system nonli-
nearity and fails to find a design lighter than the ini-
tial design. The optimum from the Taguchi method
has a larger distribution and a smaller mean stress,
and this results in poor material efficiency and still a
strong violation of the stress constraint.

TABLE III
Comparison of Different Iterations

Iteration number Predicted objective Quality loss Penalty loss Verified objective Prediction errora COVb

15 1349.7 467.3 861.7 1329.0 20.7 0.0079
25 1222.4 470.9 779.0 1249.8 27.4 0.0055
48 452.7 453.9 0.0 453.9 3.2 0.00005

a Difference between the predicted objective and the verified result.
b Standard deviation divided by the mean of the last three searched objectives.

TABLE IV
PREGSEN’s Optimum

P(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6) Objective S/N

PREGSEN’s optimum 69.0 73.2 97.0 57.9 79.8 28.4 96.5 453.9 �26.57
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The iteration result for a conventional recursion
using NNGA shows a continuous discrepancy
between the predicted optimum and the verified
results, as shown in Figure 10, and this is due to the
lack of sufficient generality for a simulated network
from limited training samples. The iteration process
had not yet shown any convergent tendency after 51
iterations. Although the current optimum from the
conventional NNGA seems to have a lighter weight,
the design is infeasible because of the constraint
violation.

PREGSEN provides a quite reliable and efficient
search, as shown in Table V. The definition of the
fitness function will suppress the exploration of the
regions far away from the current training points,
and even the prediction from the current network
model looks promising. However, the exploration
range of the GA will grow dynamically with the
addition of new training samples from the verifica-
tion of the predicted optimum. PREGSEN reached
the optimum convergence at iteration 48. PRE-
GSEN’s optimum exhibits the smallest stress devia-
tion and leads to a design with a weight of 114.31 g
while satisfying the stress constraints. Figure 13
presents a comparison of the stress distribution
under test loads with ANSYS and shows that PRE-
GSEN’s optimum has the most even stress distribu-
tions among the various designs.

CONCLUSIONS

This study presents an integration strategy for the
part design and process control of extrusion-blow-

molding parts. Subject to mechanical constraints, the
strategy minimizes the part weight and provides the
optimum die-gap programming in one optimization
process. The material efficiency in terms of the stress
distribution from the structural analysis of the pre-
dicted thickness profile of the bottle is used as the
design objective. The mechanical constraints are em-
bedded into the design objective with a penalty
function to ensure design feasibility. The search for
the optimum die-gap programming of the extrusion-
blow-molding process then provides a feasible
design with minimum part weight. A case study of
a bottle design has been presented, and the compari-
son results show that the proposed strategy is capa-
ble of minimizing the part weight without violation
of mechanical constraints with robust searching
reliability.
Finally, the searching scheme, PREGSEN, is an

evolving network model that starts from a small
number of training samples with Taguchi’s orthogo-
nal array and selectively evolves for the most proba-
ble space of the design optimum to increase the
sampling efficiency. For complex simulation systems
such as the finite element analysis of structure
mechanics and extrusion-blow-molding processes,
the number of engineering simulations will greatly
affect the optimization cost. However, generality
imperfection is inevitable for a simulated model
from small training samples, even though great
endeavors are applied to the training of NNs.
The prediction reliability of the network model is

likely restricted to the surroundings of the learning
samples. The accuracy of the extrapolating predic-
tion depends on the model’s complexity. If the
model is nearly linear, the extrapolating prediction
will be pretty accurate. As the model nonlinearity
increases, the extrapolating accuracy decreases
because of an unknown trend outside the data
range, especially for designs farther away from the
data range. Although extrapolating designs are less
reliable, ruling out possible better designs outside
the range of current learning samples is not desira-
ble for an optimum search. The proposed optimiza-
tion scheme applies the fuzzy reasoning of predic-
tion reliability to the evolving network model to
guide the GA search for a reliable quasi-optimum
instead of a false optimum of the imperfect network

Figure 12 Die-gap openings for various optimal designs.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

TABLE V
Comparison of Various Optima

Mean stress Standard deviation stress Quality loss Penalty loss Objective Weight (g)

Initial 13.95 8.78 439.8 7789.9 8229.7 118.7
Taguchi 12.84 9.36 494.1 4868.2 25362.3 119.2
NNGA 12.76 7.39 464.3 14.0 478.3a 110.5a

PREGSEN 12.62 6.21 453.9 0.0 453.9 114.3

a This had not yet converged at the iteration of 51. The listed result is the best design so far.
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model. The methodology aims to balance reliability
and optimality. Verification of the provided opti-
mum will be added to the learning samples to
retrain the network model. If the predicted optimum
is interpolated, the verification refines the regional
accuracy of the network model to further approach
the actual peak. If the predicted optimum is extrapo-
lated, the verification suggests additional information
to explore the probable region of the optimum and
modifies the current network model. The searching
and retraining processes iterate until the convergence
of the search result. The illustrated example shows a
stable and efficient iteration process and demon-
strates the merit of the proposed method.

The authors thank F. Thibault for his consultation in the sim-
ulation using BlowSim.
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